Solid State Analog Quantum Simulation Devices Possible with Zyvex Labs’ ZyVector™ Controller

2D Quantum Metamaterials Proceedings of the 2018 NIST Workshop 

NIST, Gaithersburg, USA , 25 – 26 April 2018 World Scientific 

https://doi.org/10.1142/11438

Experimental Realization of an Extended Fermi-Hubbard Model Using a 2D Lattice of Dopant-based Quantum Dots. Wang, X., Khatami, E., Fei, F., Wyrick, J., Namboodiri, P., Kashid, R., Rigosi, A. F., Bryant, G., & Silver, R. (2022).  Nature Communications13(1), 6824. https://doi.org/10.1038/s41467-022-34220-w

Quantum simulation of a Fermi–Hubbard model using a semiconductor quantum dot array Hensgens, T., Fujita, T., Janssen, L., Li, X., Van Diepen, C. J., Reichl, C., Wegscheider, W., Das Sarma, S., & Vandersypen, L. M. K. (2017). 548(7665), 70–73. https://doi.org/10.1038/nature23022

Quantum simulation of the Hubbard model with dopant atoms in silicon. Salfi, J., Mol, J. A., Rahman, R., Klimeck, G., Simmons, M. Y., Hollenberg, L. C. L., & Rogge, S. (2016). Nature Communications7, 11342. https://doi.org/10.1038/ncomms11342

Engineering topological states in atom-based semiconductor quantum dots. Kiczynski, M., Gorman, S. K., Geng, H., Donnelly, M. B., Chung, Y., He, Y., Keizer, J. G., & Simmons, M. Y. (2022). Nature606(7915), 694–699.https://doi.org/10.1038/s41586-022-04706-0

An extended Hubbard model for mesoscopic transport in donor arrays in siliconLe, N. H., Fisher, A. J., & Ginossar, E. (2017).  1–13. http://arxiv.org/abs/1707.01876

Fabrication techniques for Solid State Analog Quantum Simulation Devices

Enhanced Atomic Precision Fabrication by Adsorption of Phosphine into Engineered Dangling Bonds on H-Si Using Scanning Tunneling Microscopy and Density Functional Theory. Wyrick, J., Wang, X., Namboodiri, P., Kashid, R. V., Fei, F., Fox, J., & Silver, R. M. (2021). ACS Nano 2022, 16, 11, 19114–19123. https://doi.org/10.1021/acsnano.2c08162

Atomic ‑ precision advanced manufacturing for Si quantum computing. Bussmann, E., Butera, R. E., Owen, J. H. G., Randall, J. N., Rinaldi, S. M., Baczewski, A. D., & Misra, S. (2021). MRS Bulletin46(July), 1–9. https://doi.org/10.1557/s43577-021-00139-8

Al-alkyls as acceptor dopant precursors for atomic-scale devices. Owen, J. H. G., Campbell, Q., Santini, R., Ivie, J. A., Baczewski, A. D., Schmucker, S. W., Bussmann, E., Misra, S., & Randall, J. N. (2021). Journal of Physics: Condensed Matter33(46), 464001. https://doi.org/10.1088/1361-648X/ac1ddf

Atom‐by‐Atom Fabrication of Single and Few Dopant Quantum Devices. Wyrick, J., Wang, X., Kashid, R. V., Namboodiri, P., Schmucker, S. W., Hagmann, J. A., Liu, K., Stewart, M. D., Richter, C. A., Bryant, G. W., & Silver, R. M. (2019). Advanced Functional Materials29(52), 1903475. 

https://doi.org/10.1002/adfm.201903475

Hole in one: Pathways to deterministic single-acceptor incorporation in Si(100)-2 × 1 Campbell, Q., Baczewski, A. D., Butera, R. E., & Misra, S. (2022. AVS Quantum Science4(1), 016801. 

https://doi.org/10.1116/5.0075467

Atomically precise digital e-beam lithography.  Randall, J. N., Owen, J. H., Fuchs, E., Saini, R., Santini, R., & Moheimani, S. O. R. (2020). In E. M. Panning & M. I. Sanchez (Eds.), Novel Patterning Technologies for Semiconductors, MEMS/NEMS and MOEMS 2020 (Issue March 2020, p. 31). SPIE. 

https://doi.org/10.1117/12.2552083