Hysteresis Correction and its Relationship to Creep and Drift in Scanning Tunneling Microscope Tip Positioning

James H. G. Owen, Udi Fuchs, Joshua B. Ballard, John N. Randall Zyvex Labs

Keywords Scanning Tunneling Microscopy, Hysteresis, Piezo Creep

Phosphorus in silicon qubits in geometries as defined by Scanning Tunneling Microscope (STM) lithography is a promising architecture, at least for a few qubits. However, as the number of qubits increases to occupy a surface area of $1\mu m^2$ or greater, positioning errors which increase nonlinearly with step lateral step size will become difficult to correct for multi-level systems. While methods for correcting positions are available such as lattice registration, artificial fiducial registration, and closed loop positioning, this model-based compensation for position uncertainties greatly reduces patterning time for highly scaled devices.

This work shows that the hysteresis error for the commonly used ScientaOmicron VT STM to be approximately $0.03r^2 \mu m$ where r is the size of a lateral step. Furthermore, it is shown that creep corrections described previously depend upon the state of the hysteresis with observed creep coefficients varying by over 10%. A real-time correction algorithm with 20-bit precision and 50 µs update time will be described. This algorithms reduces positioning errors for 2µm steps from >100nm down to <20nm. Furthermore, correcting hysteresis reduces the variability of optimal creep correction coefficients. Results will be shown for lateral motion as well as settling times in Z as shown below, with the effects of position correction on complex patterns shown.

This work was supported in part by ARO (W911NF-13- 1-0470.) and DARPA (FA8650-15-C-7542).

Figure 1: Comparison of Z settling after 1 μ m retraction with and without creep and hysteresis correction. The expected position is -500 nm.